
Design and Implementation of Efficient Load
Balancing Algorithm in Grid Environment

Sandip S.Patil, Preeti Singh
Department of Computer science & Engineering

S.S.B.T’s College of Engineering & Technology, Bambhori, Jalgaon, INDIA

Abstract—Grid technology has emerged as a new way of large-
scale distributed computing with high-performance
orientation. Grid computing is being adopted in various areas
from academic, industry research to government use. Grids
are becoming platforms for high performance and distributed
computing. Grid computing is the next generation IT
infrastructure that promises to transform the way
organizations and individuals compute, communicate and
collaborate. The goal of Grid computing is to create the
illusion of a simple but large and powerful self-managing
virtual computer out of a large collection of connected
heterogeneous systems sharing various combinations of
resources. The main goal of load balancing is to provide a
distributed, low cost, scheme that balances the load across all
the processors. To improve the global throughput of Grid
resources, effective and efficient load balancing algorithms are
fundamentally important. Focus of this project is on analyzing
Load balancing requirements in a Grid environment and
proposing a centralized and sender initiated load balancing
algorithm. In this work we have proposed an efficient load
balancing algorithm which optimizes the response time and
latency time with respect to the server.

Keywords- Load balancing, grid computing

I. INTRODUCTION

The rapid development in computing resources has
enhanced the performance of computers and reduced their
costs. This availability of low cost powerful computers
coupled with the popularity of the Internet and high-speed
networks has led the computing environment to be mapped
from distributed to Grid environments. In fact, recent
researches on computing architectures are allowed the
emergence of a new computing paradigm known as Grid
computing. Grid is a type of distributed system which
supports the sharing and coordinated use of geographically
distributed and multiowner resources, independently from
their physical type and location, in dynamic virtual
organizations that share the same goal of solving large-scale
applications [1]. In order to fulfill the user expectations in
terms of performance and efficiency, the Grid system needs
efficient load balancing algorithms for the distribution of
tasks. A load balancing algorithm attempts to improve the
response time of user’s submitted applications by ensuring
maximal utilization of available resources. The main goal is
to prevent, if possible, the condition where some processors
are overloaded with a set of tasks while others are lightly
loaded or even idle. Although load balancing problem in
conventional distributed systems has been intensively
studied, new challenges in Grid computing still make it an
interesting topic and many research projects are under way
[2]. This is due to the characteristics of Grid computing and
the complex nature of the problem itself. Load balancing
algorithms in classical distributed systems, which usually

run on homogeneous and dedicated resources, cannot work
well in the Grid architectures. Grid Resource Management
is defined as the process of identifying requirements,
matching resources to applications, allocating those
resources, and scheduling and monitoring Grid resources
over time in order to run Grid applications as efficiently as
possible. Resource discovery is the first phase of resource
management. Scheduling and monitoring is the next step.
Scheduling process directs the job to appropriate resource
and monitoring process monitors the resources. The
resources which will be heavily loaded will act as server of
task and the resources which are Lightly Loaded will act as
receiver of task. Task will be migrated from heavily loaded
node to lightly loaded node. Resources are dynamic in
nature so the load of resources varies with change in
configuration of Grid so the Load Balancing of the tasks in
a Grid environment can significantly influence Grid’s
performance [5].

II. LOAD BALANCING CATEGORIES

Load balancing problem has been discussed in traditional
distributed systems literature for more than two decades and
various algorithms, strategies and policies have been
proposed, classified and implemented. Load balancing
algorithms can be classified into two categories, static and
dynamic [4].

A. Static load balancing Algorithms

Static load balancing algorithms allocate tasks of a parallel
program to workstations based on either the load at the time
nodes are allocated to some task, or based on average load
of workstation cluster.

Fig. 1 Static Load Balancing

The decisions related to load balance are made at compile
time when resource requirements are estimated. The
advantage in this sort of algorithm is the simplicity in terms
of both implementation as well as overhead, since there is
no need to constantly monitor the workstations for
performance statistics.
The decisions related to load balance are made at compile
time when resource requirements are estimated. The
advantage in this sort of algorithm is the simplicity in terms
of both implementation as well as overhead, since there is
no need to constantly monitor the workstations for

Sandip S. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2159-2164

2159

performance statistics. However, static algorithms only
work well, when there is not much variation in the load on
the workstations. Clearly, static load balancing algorithms
aren’t well suited to a grid environment, where loads may
vary significantly at various times.
A few static load balancing techniques are:

 Round-Robin Algorithm: tasks are passed to
processes in a sequential order, when the last
process has received a task the schedule continues
with the first process (a new round).

 Randomized Algorithm: allocation of tasks to
processes is random.

 Simulated Annealing or Genetic Algorithms:
mixture allocation procedure including
optimization techniques.

Drawbacks of Static Load Balancing Algorithms
 It is very difficult to estimate a-priori (in an

accurate way) the execution time of various parts
of a program.

 Sometimes there are communication delays that
vary in an uncontrollable way.

 For some problems the number of steps to reach a
solution is not known in advance.

B. Dynamic load balancing Algorithms

According to the name dynamic load balancing algorithms
takes decision at run time, and use current or recent load
information when making distribution decisions. In grid
environment with dynamic load balancing
allocate/reallocate resources at runtime based on no a priori
task information, which determine when and which task has
to be migrated.

Fig. 2 Dynamic Load Balancing

After using effectively dynamic load balancing algorithms
can provide a significant improvement in performance over
static algorithms. But this comes at the additional cost of
collecting and maintaining load information, so it is
important to keep these overheads within reasonable limits.

III. LOAD BALANCING STRATEGIES

There are three major parameters which usually define the
strategy of a specific load balancing algorithm. Some load
balancing strategies are being discussed in the following
section [7].

A. Sender-Initiated v/s. Receiver-Initiated Strategies

In sender-initiated policies, congested nodes attempt to
move work to lightly-loaded nodes. In receiver-initiated
policies, lightly-loaded nodes look for heavily-loaded nodes
from which work may be received. The sender-initiated
policy performing better than the receiver-initiated policy at
low to moderate system loads. Reasons are that at these
loads, the probability of finding a lightly-loaded node is

higher than that of finding a heavily-loaded node. Similarly,
at high system loads, the receiver initiated policy performs
better since it is much easier to find a heavily-loaded node.
As a result, adaptive policies have been proposed which
behave like sender-initiated policies at low to moderate
system loads, while at high system loads they behave like
receiver-initiated policies [3].

B. Global v/s. Local Strategies

Global or local policies answer the question of what
information will be used to make a load balancing decision
in global policies. The load balancer uses the performance
profiles of all available workstations. In local policies,
workstations are partitioned into different groups. The
benefit in a local scheme is that performance profile
information is only exchanged within the group. The choice
of a global or local policy depends upon the behavior of an
application, which will exhibit. For global schemes,
balanced load convergence is faster compared to a local
scheme since all workstations are considered at the same
time [3].

C. Centralized v/s. De-centralized Strategies

A load balancing strategy is categorized as either
centralized or distributed, both these define where load
balancing decisions are made. In a centralized scheme,
algorithm is located on one master workstation node and all
decisions are made there. In a de-centralized scheme, the
load balancer is replicated on all workstations. There are
different algorithms used in de-centralized scheme for job
selection [7]. These algorithms are round-robin algorithm,
random polling algorithm etc.

IV. LOAD BALANCING POLICIES

Load balancing algorithms can be based on many policies;
some important policies are defined below [7].

 Information policy: This policy specifies what
workload information should be collected, when it
is to be collected and from where.

 Triggering policy: This policy determines the
appropriate period to start a load balancing
operation.

 Resource type policy: This policy classifies a
resource as server or receiver of tasks according to
its availability status.

 Location policy: This policy uses the results of the
resource type policy to find a suitable partner for a
server or receiver.

 Selection policy: This policy defines the tasks that
should be migrated from overloaded resources
(source) to most idle resources (receiver).

The main objective of load balancing methods is to speed
up the execution of applications on resources whose
workload varies at run time in unpredictable way. Hence it
is significant to define metrics to measure the resource
workload [4]. Every dynamic load balancing method must
estimate the timely workload information of each resource.
Success of a load balancing algorithm depends upon
stability of the number of messages (small overhead),
support environment, low cost update of the workload, and
short mean response time which is a significant
measurement for a user [3]. It is also essential to measure

Sandip S. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2159-2164

2160

the communication cost induced by a load balancing
operation, but to achieve all these, anyone would have to
face great challenge in grid environment V. Load Balancing
Mechanism
There are some load balancing algorithms like virtual
machine migration, node reconfiguration by user level
thread migration, robin-hood an active objects migration
mechanism for intranet, load based graph method and data
consolidation [6].

A. Virtual Machine Migration (Live Migration)
In virtual machine migration snapshots of machine are sent
to other machine that’s why it is called the virtual machine
migration. There are two methods for virtual machine
migration. First one is live migration and second one is
regular migration. In live migration, running domain
between the different host machines is migrated without
stopping the job. In between it stops job and gathers all
required data then resumes. But this happens only in same
layer-2 network and IP subnet. In regular migration
generally stop the job then migrated.

B. Node Reconfiguration by User Level Thread Migration

This mechanism makes application workload migrate from
source node to destination node, and then let source node
depart from original computing environment .There are two
mechanism for this, first one is node reconfiguration by
user-level thread migration and another one is node
reconfiguration by kernel level thread migration. Node
reconfiguration by user level thread migration has been
discussed in this survey. There are two implementation
methods of node reconfiguration. One is synchronous
method and the other is asynchronous method. In
synchronous method, all nodes are paused during
reconfiguration. On the other hand, in asynchronous
method all nodes continue to work simultaneously with
reconfiguration. Synchronous method may make
performance down even though it is easier to design.
Alternatively, better performance can be obtained by
asynchronous method as long as more attention paid to
correctly maintain the order of node reconfiguration
messages [7].

C. Robin Hood: An Active Objects Load Balancing
Mechanism for Intranet
Robin-hood algorithms present a new totally non-
centralized solution, multicast channel to communicate, and
synchronize the processors and proactive tools to migrate
jobs between them. Proactive techniques are very useful
and provide the mobility and security in uniform
framework. This work focuses on dynamic load balancing.
Main objective of this algorithm is to improve the decision
time in non-centralized environment. In this mechanism
two basic things have been considered, first one to know
about the local load and second one to transfer the load
from high dense node to the less loaded node. This uses the
non-centralized architecture and non-broadcasting of the
balance of each node to reduce the overload in network.
This is totally non-centralized load balancing mechanism,
using the proactive library for the migration of jobs, and a
multicast channel for node coordination.

D. Load Graph Based Transfer Method

Load based graph method is based on network graph where
each node is represented with its load, whereas load can be
the number of users, average queue length or the memory
utilization. It uses analytic model and single load
determination policy throughout the system and load is
determined on the basis of memory utilization and average
queue length. This algorithm is based on three-layered
structure. Top layer is load balancing layer which takes care
of token generation, taking decision about task transfer,
middle one is called monitoring layer and acts as an
interface between top and middle and monitors load
changes and third one called communication layer which
take care of actual task transfer [6].

V. PROPOSED LOAD BALANCING ALGORITHM

Load balancing is defined as the allocation of the work of a
single application to processors at run-time so that the
execution time of the application is minimized. Load
balancing is defined as the allocation of the work of a single
application to processors at run-time so that the execution
time of the application is minimized. This chapter is going
to discuss the design of proposed Load Balancing
algorithm.
The choice of a load balancing algorithm for a Grid
environment is not always an easy task. Various algorithms
have been proposed in the literature, and each of them
varies based on some specific application domain. Some
load balancing strategies work well for applications with
large parallel jobs, while others work well for short, quick
jobs. Some strategies are focused towards handling data-
heavy tasks, while others are more suited to parallel tasks
that are computation heavy. While many different load
balancing algorithms have been proposed, there are basic
steps that nearly all algorithms have in common:
• Monitoring workstation performance (load monitoring)
• Exchanging this information between workstations
(synchronization)
Efficient Load Balancing algorithm makes Grid
Middleware efficient and which will ultimately leads to fast
execution of application in Grid environment [20]. In this
work, an attempt has been made to formulate a
decentralized, sender-initiated load balancing algorithm for
Grid environments which is based on different parameters.
One of the important characteristics of this algorithm is to
estimate system parameters such as CPU utilization of each
participating nodes.

VI. DESIGN OF LOAD BALANCING ALGORITHM

Load balancing should take place when the load situation
has changed. There are some particular activities which
change the load configuration in Grid environment. The
activities can be categorized as following:
• Selection of static or dynamic load balancing category.
• Defining the various parameters.
• Connection with the server.
• Sending threads to the server and executing results.
For static load balancing first of all Collect Host
information from user (i.e. ip address, port, request URL
etc), when we execute this will try to connect to the host. If
it get connected to host it will perform Simulating the
number requests to the Host using no. of threads, then it
will bring Result From the Server and populate into the
view area.

Sandip S. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2159-2164

2161

For dynamic load balancing , Schedule the host information
for Dynamic Execution, Check the Date and Time for every
second comparing the scheduled date and time, Try to
connect the Host, Simulating the number requests to the
Host using no. of threads, Bring Result From the Server and
populate into the view area.

EFFICIENT LOAD BALANCING ALGORITHM
1. Start
2. For static load balancing, Collect Host information from
user (i.e. ip address, port, request URL etc).
 { Host name/IP, Port, Protocol type, Requested
URL, No of request, Execution time, Request to }
3. When we execute this will try to connect to the host. If
does not get connected again go to step 2.
4. If it get connected to host it will perform Simulating the
number requests to the Host using no. of threads, then it
will bring Result From the Server and populate into the
view area.
5. For dynamic load balancing, Schedule the host
information for Dynamic Execution.
6. Check the Date and Time for every second comparing the
scheduled date and time.
7. Try to connect the Host, Simulating the number requests
to the Host using no. of threads. If not connected back to
step 5.
8. Bring Result from the Server and populate into the view
area.
9. End
The following flow diagram shows the overall system
archictecture and flow of the system for static load
balancing and dyanamic load balancing.

Fig. 3: Flow Chart of Overview of Algorithm

Fig. 4: Flow Chart of Static load balancing Algorithm

Fig. 5: Flow Chart of Dynamic load balancing Algorithm

Sandip S. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2159-2164

2162

Latency is a measure of time delay experienced in a
system, the precise definition of which depends on the
system and the time being measured. Latencies may have
different meaning in different contexts. In simulation
applications, 'latency' refers to the time delay, normally
measured in milliseconds (1/1,000 sec), between initial
input and an output clearly discernible to the simulator
trainee or simulator subject. Latency is sometimes also
called transport delay. Some authorities distinguish between
latency and transport delay by using the term 'latency' in the
sense of the extra time delay of a system over and above the
reaction time of the vehicle being simulated, but this
requires a detailed knowledge of the vehicle dynamics and
can be controversial.

Response time may refer to: Response time (technology),
the time a generic system or functional unit takes to react to
a given input Responsiveness, how quickly an interactive
system responds to user input.
Request methods- HTTP defines nine methods (sometimes
referred to as "verbs") indicating the desired action to be
performed on the identified resource. What this resource
represents, whether pre-existing data or data that is
generated dynamically, depends on the implementation of
the server. Often, the resource corresponds to a file or the
output of an executable residing on the server.

HEAD- Asks for the response identical to the one that
would correspond to a GET request, but without the
response body. This is useful for retrieving meta-
information written in response headers, without having to
transport the entire content.

GET- Requests a representation of the specified resource.
Requests using GET (and a few other HTTP methods)
"SHOULD NOT have the significance of taking an action
other than retrieval". The W3C has published guidance
principles on this distinction, saying, "Web application
design should be informed by the above principles, but also
by the relevant limitations."

POST- Submits data to be processed (e.g., from an HTML
form) to the identified resource. The data is included in the
body of the request. This may result in the creation of a new
resource or the updates of existing resources or both.

Status Code Definitions- Each Status-Code is described
below, including a description of which method(s) it can
follow and any misinformation required in the response.

200 OK- The request has succeeded. The information
returned with the response is dependent on the method used
in the request, for example:

GET an entity corresponding to the requested resource is
sent in the response; HEAD the entity-header fields
corresponding to the requested resource are sent in the
response without any message-body; POST an entity
describing or containing the result of the action; TRACE an
entity containing the request message as received by the
end server.

404 Not Found - The server has not found anything
matching the Request-URI. No indication is given of

whether the condition is temporary or permanent. The 410
(Gone) status code SHOULD be used if the server knows,
through some internally configurable mechanism, that an
old resource is permanently unavailable and has no
forwarding address. This status code is commonly used
when the server does not wish to reveal exactly why the
request has been refused, or when no other response is
applicable.

Fig 6: Adding configuration for Static load balancing

Fig 7: Graph result of Static load balancing

Fig 8: Scheduling for Dynamic load balancing

Fig 9: Dynamic load balancing result

Sandip S. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2159-2164

2163

Fig 10: Dual axis chart result

TABLE 1:

Parameters & its result of http request 0

VII. CONCLUSION AND FUTURE WORK
In this paper, we have described multiple aspects of Grid
Computing and introduced numerous concepts which
illustrate its broad capabilities. Grid Computing is definitely
a promising tendency to solve high demanding applications
and all kinds of problems. Objective of the grid
environment is to achieve high performance computing by
optimal usage of geographically distributed and
heterogeneous resources. But grid application performance
remains a challenge in dynamic grid environment.
Resources can be submitted to Grid and can be withdrawn
from Grid at any moment. This characteristic of Grid makes
Load Balancing one of the critical features of Grid
infrastructure. There are a number of factors, which can
affect the grid application performance like load balancing,
heterogeneity of resources and resource sharing in the Grid
environment. In this project we have focused on Load
Balancing and tried to present the impacts of Load
Balancing on grid application performance and finally
proposed an efficient Load Balancing algorithm for Grid
environment. Every Load Balancing algorithm implements
five policies. The efficient implementation of these policies

decides overall performance of Load Balancing algorithm.
In this work we analyzed existing Load Balancing
algorithm, proposed and implemented an enhanced
algorithm which more efficiently implements three out of
five policies implemented in existing Load Balancing
algorithm. These three policies are: Information Policy,
Triggering Policy and Selection Policy.

The future scope of this work includes implementing the
application using tools such as globus or gridsim for
showing the simulation, Migration of jobs, Design and
Testing of load balancing algorithm in a Multi-middleware
scenario. A further extension to this work would be in
making this Load balancing Module a middleware
independent module.

REFERENCES

[1] Yajun Li, Yuhang Yang Rongbo Zhu “A Hybrid Load
balancing Strategy of Sequential Tasks for Computational
Grids” 2009 International Conference on Networking and
Digital Society

[2] B. Yagoubi and Y. Slimani “Task Load Balancing Strategy for
Grid Computing” Journal of Computer Science 3 (3): 186-194,
2007 ISSN 1546-9239, 2007 Science Publications

[3] Wang Qiong, He Xinhua, Zhao Yingkun “Load Balancing
Algorithm Based on Dual-Load Prediction” 2009 Second
International Conference on Intelligent Networks and
Intelligent Systems

[4] Belabbas Yagoubi and Meriem Medebber “A Load Balancing
Model for Grid Environment” 1-4244-1364-8/07/$25.00
©2007 IEEE

[5] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma
“Performance Analysis of Load Balancing Algorithms” World
Academy of Science, Engineering and Technology 38 2008

[6] A.K. Aggarwal, Robert Kent and Jun Wei “PATH Algorithm
for Adaptive Load Balancing on a Grid”

[7] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma
“Performance Analysis of Load Balancing Algorithms” World

Academy of Science, Engineering and Technology 38 2008

[8] Robert Elsässer Burkhard Monien Stefan Schamberger “Load
Balancing in Dynamic Networks” Proceedings of the 7th
International Symposium on Parallel Architectures, Algorithms
and Networks (ISPAN’04) 2004 IEEE

[9] Yajun Li, Yuhang Yang Rongbo Zhu “A Hybrid Load
balancing Strategy of Sequential Tasks for Computational
Grids” 2009 International Conference on Networking and
Digital Society

[10] B. Yagoubi and Y. Slimani “Task Load Balancing Strategy for
Grid Computing” Journal of Computer Science 3 (3): 186-194,
2007 ISSN 1546-9239, 2007 Science Publications

[11] S.Ayyasamy and S.N. Sivanandam “A Cluster Based
Replication Architecture for Load Balancing in Peer-to-Peer
Content Distribution” International Journal of Computer
Networks & Communications (IJCNC) Vol.2, No.5, September
2010

[12] Wang Qiong, He Xinhua, Zhao Yingkun “Load Balancing
Algorithm Based on Dual-Load Prediction” 2009 Second
International Conference on Intelligent Networks and
Intelligent Systems

[13] K. Li, “Optimal load distribution in nondedicated
heterogeneous cluster and grid computing environments”,
Journal of Systems Architecture (2007)

[14] Menno Dobber, Ger Koole, and Rob van der Mei, Dynamic
Load Balancing for a Grid Application,
http://www.cs.vu.nl/~amdobber

Parameters Result for http request 0
Requested URL HTTP://localhost:8081//examples/index.html
Request date Sun May 29 22:50:26 IST 2011
CPU Time 1856411900
Request Start
Time

10:50:13

Latency Time 1306689626014
Requested
Method

HEAD

Response code 200
Content
Encoding

Null

HTTP_OK 200
Content Length 1127
Content Type Text/html
Connection
Time Out

0

Content
Classsun.net.www.protocolhttp.HttpURLConnection$
HttpInputStream

Sandip S. Patil et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2159-2164

2164

